《PySpark机器学习、自然语言处理与推荐系统》PDF电子书免费下载

作者:  [印]普拉莫德·辛格(Pramod Singh)著 蒲成 译

出版社: 清华大学出版社

出版年: 2020年01月

ISBN: 9787302540908

~~滚到底部有网盘下载链接~~

内容简介

目录

目 录
第1章 数据革命 1
1.1 数据生成 1
1.2 Spark 2
1.2.1 Spark Core 3
1.2.2 Spark组件 4
1.3 设置环境 5
1.3.1 Windows 5
1.3.2 iOS 6
1.4 小结 7
第2章 机器学习简介 9
2.1 有监督机器学习 10
2.2 无监督机器学习 12
2.3 半监督机器学习 14
2.4 强化学习 14
2.5 小结 15
第3章 数据处理 17
3.1 加载和读取数据 17
3.2 添加一个新列 20
3.3 筛选数据 21
3.3.1 条件1 21
3.3.2 条件2 22
3.4 列中的非重复值 23
3.5 数据分组 23
3.6 聚合 25
3.7 用户自定义函数(UDF) 26
3.7.1 传统的Python函数 26
3.7.2 使用lambda函数 27
3.7.3 Pandas UDF(向量化的UDF) 28
3.7.4 Pandas UDF(多列) 29
3.8 去掉重复值 29
3.9 删除列 30
3.10 写入数据 30
3.10.1 csv 31
3.10.2 嵌套结构 31
3.11 小结 31
第4章 线性回归 33
4.1 变量 33
4.2 理论 34
4.3 说明 41
4.4 评估 42
4.5 代码 43
4.5.1 数据信息 43
4.5.2 步骤1:创建
SparkSession对象 44
4.5.3 步骤2:读取数据集 44
4.5.4 步骤3:探究式数据分析 44
4.5.5 步骤4:特征工程化 45
4.5.6 步骤5:划分数据集 47
4.5.7 步骤6:构建和训练线性回归模型 47
4.5.8 步骤7:在测试数据上评估线性回归模型 48
4.6 小结 48
第5章 逻辑回归 49
5.1 概率 49
5.1.1 使用线性回归 50
5.1.2 使用Logit 53
5.2 截距(回归系数) 54
5.3 虚变量 55
5.4 模型评估 56
5.4.1 正确的正面预测 56
5.4.2 正确的负面预测 57
5.4.3 错误的正面预测 57
5.4.4 错误的负面预测 57
5.4.5 准确率 57
5.4.6 召回率 57
5.4.7 精度 58
5.4.8 F1分数 58
5.4.9 截断/阈值概率 58
5.4.10 ROC曲线 58
5.5 逻辑回归代码 59
5.5.1 数据信息 59
5.5.2 步骤1:创建Spark会话对象 60
5.5.3 步骤2:读取数据集 60
5.5.4 步骤3:探究式数据分析 60
5.5.5 步骤4:特征工程 63
5.5.6 步骤5:划分数据集 68
5.5.7 步骤6:构建和训练逻辑回归模型 69
5.5.8 训练结果 69
5.5.9 步骤7:在测试数据上评估线性回归模型 70
5.5.10 混淆矩阵 71
5.6 小结 72
第6章 随机森林 73
6.1 决策树 73
6.1.1 熵 75
6.1.2 信息增益 76
6.2 随机森林 78
6.3 代码 80
6.3.1 数据信息 80
6.3.2 步骤1:创建SparkSession对象 81
6.3.3 步骤2:读取数据集 81
6.3.4 步骤3:探究式数据分析 81
6.3.5 步骤4:特征工程 85
6.3.6 步骤5:划分数据集 86
6.3.7 步骤6:构建和训练随机森林模型 87
6.3.8 步骤7:基于测试数据进行评估 87
6.3.9 准确率 89
6.3.10 精度 89
6.3.11 AUC曲线下的面积 89
6.3.12 步骤8:保存模型 90
6.4 小结 90
第7章 推荐系统 91
7.1 推荐 91
7.1.1 基于流行度的RS 92
7.1.2 基于内容的RS 93
7.1.3 基于协同过滤的RS 95
7.1.4 混合推荐系统 103
7.2 代码 104
7.2.1 数据信息 105
7.2.2 步骤1:创建SparkSession对象 105
7.2.3 步骤2:读取数据集 105
7.2.4 步骤3:探究式数据分析 105
7.2.5 步骤4:特征工程 108
7.2.6 步骤5:划分数据集 109
7.2.7 步骤6:构建和训练推荐系统模型 110
7.2.8 步骤7:基于测试数据进行预测和评估 110
7.2.9 步骤8:推荐活动用户可能会喜欢的排名靠前的电影 111
7.3 小结 114
第8章 聚类 115
8.1 初识聚类 115
8.2 用途 117
8.2.1 K-均值 117
8.2.2 层次聚类 127
8.3 代码 131
8.3.1 数据信息 131
8.3.2 步骤1:创建SparkSession对象 131
8.3.3 步骤2:读取数据集 131
8.3.4 步骤3:探究式数据分析 131
8.3.5 步骤4:特征工程 133
8.3.6 步骤5:构建K均值聚类模型 133
8.3.7 步骤6:聚类的可视化 136
8.4 小结 137
第9章 自然语言处理 139
9.1 引言 139
9.2 NLP涉及的处理步骤 139
9.3 语料 140
9.4 标记化 140
9.5 移除停用词 141
9.6 词袋 142
9.7 计数向量器 143
9.8 TF-IDF 144
9.9 使用机器学习进行文本分类 145
9.10 序列嵌入 151
9.11 嵌入 151
9.12 小结 160
显示部分信息

下载价格:免费
立即下载
登入/注册
知识就是力量
没有账号? 忘记密码?