《实战深度学习——原理、框架及应用》PDF电子书免费下载

作者:  邓劲生 庄春华

出版社: 清华大学出版社

出版年: 2021年01月

ISBN: 9787302567073

~~滚到底部有网盘下载链接~~

内容简介

目录

第1章 深度学习初识1
1.1 什么是深度学习1
1.1.1 深度学习与机器学习的关系1
1.1.2 深度学习与人工智能的关系2
1.1.3 深度学习的应用案例2
1.2 机器学习初识4
1.2.1 机器学习概述4
1.2.2 机器学习的分支5
1.3 神经网络初识8
1.3.1 神经网络的来源8
1.3.2 人工神经网络与神经元模型8
1.4 本章小结9
思考题10
第2章 深度学习主流工具及框架11
2.1 开发环境的搭建及使用11
2.1.1 下载及安装Anaconda开发工具11
2.1.2 Python库的导入与添加13
2.1.3 Anaconda命令简介14
2.2 深度学习的主要框架15
2.2.1 TensorFlow概况16
2.2.2 CPU版环境搭建与调用17
2.2.3 GPU版环境搭建与调用19
2.2.4 Keras的调用24
2.3 本章小结25
思考题26
第3章 神经网络的原理及实现27
3.1 数学基础27
3.1.1 张量27
3.1.2 导数28
3.2 神经网络模型及结构29
3.2.1 MP神经元模型30
3.2.2 感知机31
3.2.3 前向传播32
3.2.4 反向传播34
3.3 激活函数35
3.3.1 Sigmoid函数35
3.3.2 Tanh函数36
3.3.3 ReLU函数38
3.3.4 Swish函数39
3.4 损失函数40
3.4.1 均值平方差40
3.4.2 交叉熵41
3.5 优化方法: 梯度下降41
3.5.1 批量梯度下降42
3.5.2 随机梯度下降42
3.5.3 小批量梯度下降42
3.6 综合案例: 搭建简单的神经网络43
3.6.1 基本功能函数43
3.6.2 简单神经网络的搭建44
3.6.3 拟合函数可视化46
3.7 本章小结48
思考题48
第4章 卷积神经网络49
4.1 卷积神经网络入门49
4.1.1 卷积神经网络概述49
4.1.2 卷积神经网络的结构50
4.2 卷积运算52
4.2.1 卷积函数53
4.2.2 卷积实例54
4.3 池化运算59
4.3.1 池化函数60
4.3.2 池化实例61
4.4 综合案例: 手写数字识别65
4.4.1 MNIST数据集初识65
4.4.2 手写数字识别模型构建和训练67
4.5 本章小结71
思考题72
第5章 循环神经网络73
5.1 循环神经网络入门73
5.1.1 循环神经网络概述73
5.1.2 序列数据74
5.1.3 循环神经网络结构75
5.1.4 梯度消失和梯度爆炸76
5.2 长短期记忆网络——LSTM78
5.2.1 长期依赖问题78
5.2.2 长短期记忆网络结构79
5.3 综合案例: 语义情感分析83
5.4 本章小结88
思考题88
第6章 生成对抗网络89
6.1 生成对抗网络初识89
6.1.1 生成对抗网络概述89
6.1.2 生成对抗网络基本模型89
6.2 生成对抗网络的基本原理90
6.3 综合案例: 仿照手写字体91
6.4 本章小结98
思考题98
第7章 基于深度学习的目标检测99
7.1 目标检测基础99
7.1.1 数据集99
7.1.2 性能指标100
7.1.3 锚点101
7.1.4 锚框101
7.1.5 非极大值抑制101
7.2 传统的目标检测101
7.2.1 ViolaJones102
7.2.2 方向梯度直方图103
7.2.3 DPM105
7.2.4 综合案例: DPM行人检测106
7.3 结合候选区域和CNN分类的目标检测框架110
7.3.1 RCNN110
7.3.2 SPPNET111
7.3.3 Fast RCNN113
7.3.4 Faster RCNN114
7.4 回归问题的端到端的目标检测框架117
7.4.1 YOLO117
7.4.2 SSD118
7.4.3 综合案例: YOLO目标检测118
7.5 本章小结122
思考题122
第8章 基于深度学习的图像分割123
8.1 基于图论的方法123
8.1.1 NormalizedCut124
8.1.2 GraphCut124
8.1.3 GrabCut125
8.1.4 综合案例: GrabCut前景提取126
8.2 基于聚类的方法127
8.2.1 K均值聚类128
8.2.2 谱聚类128
8.2.3 Meanshift129
8.2.4 SLIC129
8.2.5 聚类应用130
8.2.6 综合案例: SLIC分割超像素131
8.3 基于深度语义的方法132
8.3.1 FCN132
8.3.2 DeepLab系列133
8.3.3 PSPNet133
8.3.4 UNet135
8.3.5 SegNet135
8.3.6 综合案例: 细胞壁检测136
8.4 本章小结142
思考题142
第9章 基于深度学习的人脸识别143
9.1 训练图像数据采集143
9.1.1 训练图像数据源143
9.1.2 爬取图像数据集144
9.2 CNN人脸识别设计146
9.2.1 CNN人脸识别设计方案146
9.2.2 CNN图像处理146
9.2.3 图像预处理148
9.3 CNN模型搭建149
9.3.1 搭建卷积层150
9.3.2 搭建池化层150
9.3.3 选取激活函数151
9.3.4 选取优化器151
9.3.5 自定义损失函数152
9.3.6 设置参数调整学习效率152
9.3.7 训练CNN模型154
9.3.8 模型保存加载与评估155
9.3.9 模型测试156
9.4 口罩佩戴识别增强157
9.5 本章小结158
思考题158
第10章 基于深度学习的文本自动生成159
10.1 训练文本数据采集159
10.1.1 训练文本数据源159
10.1.2 训练文本数据整理160
10.2 LSTM五言律诗自动生成设计160
10.2.1 文本预处理161
10.2.2 文本数据标准化161
10.2.3 LSTM模型搭建162
10.2.4 训练LSTM模型162
10.3 测试LSTM模型163
10.3.1 生成序列数据163
10.3.2 定义采样方法163
10.4 本章小结166
思考题166
第11章 深度学习展望167
11.1 深度学习的探索方向167
11.1.1 设计更好的深度学习框架167
11.1.2 发现更好的网络模型167
11.2 深度学习的应用场景展望168
11.2.1 教育领域168
11.2.2 金融领域168
11.2.3 医疗领域168
11.2.4 文艺领域169
11.2.5 无人服务169
11.3 本章小结169
参考文献170
显示部分信息

下载价格:免费
立即下载
登入/注册
知识就是力量
没有账号? 忘记密码?