《机器学习入门:基于数学原理的Python实战》PDF电子书免费下载

作者:  戴璞微,潘斌

出版社: 北京大学出版社

出版年: 2019年12月

ISBN: 9787301308974

~~滚到底部有网盘下载链接~~

内容简介

目录

第1章 机器学习及其数学基础
1.1 机器学习与人工智能简述 2
1.2 高等数学 4
1.3 线性代数 7
1.4 概率论与数理统计 14
1.5 Jensen不等式 25
1.6 本章小结 27
第2章 线性回归
2.1 线性回归模型 29
2.2 梯度下降算法 30
2.3 再看线性回归 32
2.4 正则方程 34
2.5 概率解释 35
2.6 线性回归的Python实现 36
2.7 案例:利用线性回归预测波士顿房价 43
2.8 本章小结 54
第3章 局部加权线性回归
3.1 欠拟合与过拟合 56
3.2 局部加权线性回归模型 57
3.3 局部加权线性回归的Python实现 61
3.4 案例:再看预测波士顿房价 64
3.5 案例:利用局部加权线性回归预测鲍鱼年龄 71
3.6 本章小结 77
第4章?Logistic回归与Softmax回归
4.1 监督学习 80
4.2 Logistic回归 80
4.3 广义线性模型 84
4.4 Softmax回归 86
4.5 Logistic回归的Python实现 90
4.6 案例:利用Logistic回归对乳腺癌数据集进行分类 96
4.7 Softmax回归的Python实现 107
4.8 案例:利用Softmax回归对语音信号数据集进行分类 116
4.9 本章小结 127
第5章 模型评估与优化
5.1 模型性能度量 130
5.2 偏差-方差平衡 134
5.3 正则化 135
5.4 交叉验证 144
5.5 Ridge回归的Python实现 145
5.6 案例:再看预测鲍鱼年龄 153
5.7 带L2正则化的Softmax回归的Python实现 156
5.8 案例:再看语音信号数据集分类 161
5.9 本章小结 165
第6章 BP神经网络
6.1 神经网络模型 168
6.2 BP算法与梯度下降算法 171
6.3 BP神经网络的相关改进 175
6.4 BP神经网络的Python实现 185
6.5 案例:利用BP神经网络对语音信号数据集进行分类 197
6.6 本章小结 215
第7章 K-Means聚类算法
7.1 无监督学习与聚类 218
7.2 K-Means聚类算法 219
7.3 K-Means聚类的Python实现 222
7.4 案例:利用K-Means算法对Iris数据集进行聚类 225
7.5 本章小结 229
第8章 高斯混合模型
8.1 EM算法 231
8.2 高斯混合模型 233
8.3 GMM与K-Means的区别与联系 238
8.4 聚类性能评价指标 240
8.5 GMM的Python实现 242
8.6 案例:利用GMM对葡萄酒数据集进行聚类 248
8.7 本章小结 255
第9章 主成分分析
9.1 降维技术 258
9.2 主成分分析 258
9.3 核函数 263
9.4 核主成分分析 265
9.5 PCA的Python实现 268
9.6 案例:利用PCA对葡萄酒质量数据集进行降维 271
9.7 本章小结 280
显示部分信息

下载价格:免费
立即下载
登入/注册
知识就是力量
没有账号? 忘记密码?