《人工智能基础 数学知识》PDF电子书免费下载

作者:  张晓明

出版社: 人民邮电出版社

出版年: 2020年02月

ISBN: 9787115523198

~~滚到底部有网盘下载链接~~

内容简介

目录

篇 线性代数

第 1 章 论线性代数的重要性 2

1.1 小白的苦恼 2

1.2 找朋友 4

1.3 找推荐 7

1.4 赚大钱 10

第 2 章 从相似到向量 12

2.1 问题:如何比较相似 12

2.2 代码示例 12

2.3 专家解读 17

第 3 章 向量和向量运算 20

3.1 代码示例:在 Python 中使用向量 20

3.1.1 创建向量 20

3.1.2 向量的范数(模长) 21

3.1.3 向量的相等 21

3.1.4 向量加法(减法) 22

3.1.5 向量的数乘 23

3.1.6 向量的线性组合 24

3.1.7 向量的乘法(点积) 25

3.2 专家解读 26

第 4 章 难的事情——向量化 27

4.1 问题:如何对文本向量化 28

4.2 One-Hot Encoding 方式 29

4.2.1 做法 1:二值化 31

4.2.2 做法 2:词频法 32

4.2.3 做法 3:TF-IDF 33

4.3 专家解读 34

4.3.1 稀疏向量和稠密向量 34

4.3.2 One-Hot 到 Word2Vec 35

第 5 章 从线性方程组到矩阵 38

5.1 回归预测 39

5.2 从方程组到矩阵 41

5.3 工程中的方程组 42

第 6 章 空间、子空间、方程组的解 44

6.1 空间和子空间 45

6.2 子空间有什么用 46

6.3 所谓解指什么 48

第 7 章 矩阵和矩阵运算 50

7.1 认识矩阵 50

7.2 创建矩阵 51

7.2.1 代码示例:如何创建矩阵 51

7.2.2 代码示例:如何创建对角矩阵 52

7.2.3 代码示例:如何创建单位矩阵 53

7.2.4 代码示例:如何创建对称矩阵 54

7.3 矩阵运算 55

7.3.1 代码示例:加法和数乘 55

7.3.2 代码示例:矩阵乘法 56

7.3.3 代码示例:求逆矩阵 57

第 8 章 解方程组和小二乘解 58

8.1 代码实战:解线性方程组 58

8.2 代码实战:用小二乘法解方程组 59

8.3 专家解读:小二乘解 61

8.3.1 损失函数 61

8.3.2 小二乘解 63

第 9 章 带有正则项的小二乘解 65

9.1 代码实战:多项式回归 66

9.2 代码实战:岭回归 69

9.3 代码实战:Lasso 回归 71

第 10 章 矩阵分解的用途 74

10.1 问题 1:消除数据间的信息冗余 74

10.2 问题 2:模型复杂度 78

10.3 代码实战:PCA 降维 79

10.4 专家解读 82

10.5 从 PCA 到 SVD 84

第 11 章 降维技术哪家强 86

11.1 问题:高维数据可视化 86

11.2 代码实战:多种数据降维 89

11.3 专家解读:从线性降维到流形学习 92

第 12 章 矩阵分解和隐因子模型 94

12.1 矩阵分解和隐因子模型概述 94

12.2 代码实战: SVD 和文档主题96

12.3 小结 100

第二篇 概率

第 13 章 概率建模 102

13.1 概率 102

13.2 随机变量和分布 103

13.2.1 0-1分布(伯努利分布) 104

13.2.2 二项分布 104

13.2.3 多项分布 105

13.2.4 正态分布 107

13.3 代码实战:检查数据是否服从正态分布 108

13.4 专家解读:为什么正态分布这么厉害 111

13.5 小结 111

第 14 章 似然估计 112

14.1 似然原理 112

14.2 代码实战:似然举例 113

14.3 专家解读:似然和正态分布 115

14.4 似然和回归建模 117

14.5 小结 118

第 15 章 贝叶斯建模 119

15.1 什么是随机向量 119

15.2 随机向量的分布 120

15.3 独立 VS 不独立 123

15.4 贝叶斯公式 123

15.5 小结 124

第 16 章 朴素贝叶斯及其拓展应用 125

16.1 代码实战:情感分析 125

16.2 专家解读 128

16.3 代码实战:优选健身计划 130

16.4 小结 136

第 17 章 进一步体会贝叶斯 137

17.1 案例:这个机器坏了吗 137

17.2 专家解读:从贝叶斯到在线学习 141

第 18 章 采样 142

18.1 贝叶斯模型的困难 143

18.2 代码实战:拒绝采样 144

18.3 代码实战: MH采样 147

18.4 专家解读:拒绝采样算法 150

18.4.1 MH 算法 151

18.4.2 马尔科夫链和细致平稳条件 152

18.4.3 细致平稳条件和接受率的关系 153

18.5 专家解读:从 MH 到 Gibbs 154

18.6 小结 155

第三篇 优化

第 19 章 梯度下降算法 158

19.1 代码实战:梯度下降算法 159

19.2 专家解读:梯度下降算法 162

19.3 代码实战:随机梯度下降算法 167

19.4 专家解读:随机梯度下降算法 168

19.5 小结 169

第 20 章 逻辑回归 171

20.1 代码实战:逻辑回归 173

20.2 专家解读:逻辑回归的原理 174

20.3 代码实战:逻辑回归梯度下降算法 177

第 21 章 凸优化 179

21.1 凸优化扫盲 181

21.2 正则化和凸优化 182

21.3 小结 183

附录 A 工作环境搭建说明 184

A.1 什么是 Python 184

A.2 本书所需的工作环境 187

A.2.1 Anaconda 版本选择 187

A.2.2 多版本共存的 Anaconda 安装方式 188

A.2.3 安装 Anaconda 主版本(Anaconda 2) 188

A.2.4 安装 Anaconda 辅版本(Anaconda 3) 190

A.2.5 开发工具的选择 190

结语193

显示部分信息

下载价格:免费
立即下载
登入/注册
知识就是力量
没有账号? 忘记密码?