《分布式机器学习:算法、理论与实践》PDF电子书免费下载

作者:  刘铁岩 陈薇 王太峰 高飞

出版社: 机械工业出版社

出版年: 2018年10月

ISBN: 9787111609186

~~滚到底部有网盘下载链接~~

内容简介

目录

序言一
序言二
前 言
作者介绍
第1章 绪论/ 1
1.1 人工智能及其飞速发展/ 2
1.2 大规模、分布式机器学习/ 4
1.3 本书的安排/ 6
参考文献/ 7
第2章 机器学习基础/ 9
2.1 机器学习的基本概念/ 10
2.2 机器学习的基本流程/ 13
2.3 常用的损失函数/ 16
2.3.1 Hinge损失函数/ 16
2.3.2 指数损失函数/ 16
2.3.3 交叉熵损失函数/ 17
2.4 常用的机器学习模型/ 18
2.4.1 线性模型/ 18
2.4.2 核方法与支持向量机/ 18
2.4.3 决策树与Boosting/ 21
2.4.4 神经网络/ 23
2.5 常用的优化方法/ 32
2.6 机器学习理论/ 33
2.6.1 机器学习算法的泛化误差/ 34
2.6.2 泛化误差的分解/ 34
2.6.3 基于容度的估计误差的上界/ 35
2.7 总结/ 36
参考文献/ 36
第3章 分布式机器学习框架/ 41
3.1 大数据与大模型的挑战/ 42
3.2 分布式机器学习的基本流程/ 44
3.3 数据与模型划分模块/ 46
3.4 单机优化模块/ 48
3.5 通信模块/ 48
3.5.1 通信的内容/ 48
3.5.2 通信的拓扑结构/ 49
3.5.3 通信的步调/ 51
3.5.4 通信的频率/ 52
3.6 数据与模型聚合模块/ 53
3.7 分布式机器学习理论/ 54
3.8 分布式机器学习系统/ 55
3.9 总结/ 56
参考文献/ 57
第4章 单机优化之确定性算法/ 61
4.1 基本概述/ 62
4.1.1 机器学习的优化框架/ 62
4.1.2 优化算法的分类和发展历史/ 65
4.2 一阶确定性算法/ 67
4.2.1 梯度下降法/ 67
4.2.2 投影次梯度下降法/ 69
4.2.3 近端梯度下降法/ 70
4.2.4 Frank-Wolfe算法/ 71
4.2.5 Nesterov加速法/ 72
4.2.6 坐标下降法/ 75
4.3 二阶确定性算法/ 75
4.3.1 牛顿法/ 76
4.3.2 拟牛顿法/ 77
4.4 对偶方法/ 78
4.5 总结/ 81
参考文献/ 8
第5章 单机优化之随机算法/ 85
5.1 基本随机优化算法/ 86
5.1.1 随机梯度下降法/ 86
5.1.2 随机坐标下降法/ 88
5.1.3 随机拟牛顿法/ 91
5.1.4 随机对偶坐标上升法/ 93
5.1.5 小结/ 95
5.2 随机优化算法的改进/ 96
5.2.1 方差缩减方法/ 96
5.2.2 算法组合方法/ 100
5.3 非凸随机优化算法/ 101
5.3.1 Ada系列算法/ 102
5.3.2 非凸理论分析/ 104
5.3.3 逃离鞍点问题/ 106
5.3.4 等级优化算法/ 107
5.4 总结/ 109
参考文献/ 109
第6章 数据与模型并行/ 113
6.1 基本概述/ 114
6.2 计算并行模式/ 117
6.3 数据并行模式/ 119
6.3.1 数据样本划分/ 120
6.3.2 数据维度划分/ 123
6.4 模型并行模式/ 123
6.4.1 线性模型/ 123
6.4.2 神经网络/ 127
6.5 总结/ 133
参考文献/ 133
第7章 通信机制/ 135
7.1 基本概述/ 136
7.2 通信的内容/ 137
7.2.1 参数或参数的更新/ 137
7.2.2 计算的中间结果/ 137
7.2.3 讨论/ 138
7.3 通信的拓扑结构/ 139
7.3.1 基于迭代式MapReduce/AllReduce的通信拓扑/ 140
7.3.2 基于参数服务器的通信拓扑/ 142
7.3.3 基于数据流的通信拓扑/ 143
7.3.4 讨论/ 145
7.4 通信的步调/ 145
7.4.1 同步通信/ 146
7.4.2 异步通信/ 147
7.4.3 同步和异步的平衡/ 148
7.4.4 讨论/ 150
7.5 通信的频率/ 150
7.5.1 时域滤波/ 150
7.5.2 空域滤波/ 153
7.5.3 讨论/ 155
7.6 总结/ 156
参考文献/ 156
第8章 数据与模型聚合/ 159
8.1 基本概述/ 160
8.2 基于模型加和的聚合方法/ 160
8.2.1 基于全部模型加和的聚合/ 160
8.2.2 基于部分模型加和的聚合/ 162
8.3 基于模型集成的聚合方法/ 167
8.3.1 基于输出加和的聚合/ 168
8.3.2 基于投票的聚合/ 171
8.4 总结/ 174
参考文献/ 174
第9章 分布式机器学习算法/ 177
9.1 基本概述/ 178
9.2 同步算法/ 179
9.2.1 同步SGD方法/ 179
9.2.2 模型平均方法及其改进/ 182
9.2.3 ADMM算法/ 183
9.2.4 弹性平均SGD算法/ 185
9.2.5 讨论/ 186
9.3 异步算法/ 187
9.3.1 异步SGD/ 187
9.3.2 Hogwild!算法/ 189
9.3.3 Cyclades算法/ 190
9.3.4 带延迟处理的异步算法/ 192
9.3.5 异步方法的进一步加速/ 199
9.3.6 讨论/ 199
9.4 同步和异步的对比与融合/ 199
9.4.1 同步和异步算法的实验对比/ 199
9.4.2 同步和异步的融合/ 201
9.5 模型并行算法/ 203
9.5.1 DistBelief/ 203
9.5.2 AlexNet/ 204
9.6 总结/ 205
参考文献/ 205
第10章 分布式机器学习理论/ 209
10.1 基本概述/ 210
10.2 收敛性分析/ 210
10.2.1 优化目标和算法/ 211
10.2.2 数据和模型并行/ 213
10.2.3 同步和异步/ 215
10.3 加速比分析/ 217
10.3.1 从收敛速率到加速比/ 218
10.3.2 通信量的下界/ 219
10.4 泛化分析/ 221
10.4.1 优化的局限性/ 222
10.4.2 具有更好泛化能力的非凸优化算法/ 224
10.5 总结/ 226
参考文献/ 226
第11章 分布式机器学习系统/ 229
11.1 基本概述/ 230
11.2 基于IMR的分布式机器学习系统/ 231
11.2.1 IMR和Spark/ 231
11.2.2 Spark MLlib/ 234
11.3 基于参数服务器的分布式机器学习系统/ 236
11.3.1 参数服务器/ 236
11.3.2 Multiverso参数服务器/ 237
11.4 基于数据流的分布式机器学习系统/ 241
11.4.1 数据流/ 241
11.4.2 TensorFlow数据流系统/ 243
11.5 实战比较/ 248
11.6 总结/ 252
参考文献/ 252
第12章 结语/ 255
12.1 全书总结/ 256
12.2 未来展望/ 257
索引/ 260
显示部分信息

下载价格:免费
立即下载
登入/注册
知识就是力量
没有账号? 忘记密码?